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Abstract—The allocation of resources between tasks within 
a swarm of agents can be difficult without a centralized 
controller. Disjunctive control has been shown to be a viable 
method to control the behavior of a swarm. In this project, a 
disjunctive fuzzy control system is used to solve the problem 
of resource management. A multi-state swarm is evolved 
with an offline learning algorithm to adapt to a dynamic 
scenario with multiple objectives. Some of the emergent 
behaviors developed through the evolutionary algorithm 
were state-switching and recruitment techniques. 

Index Terms—Keywords: swarm intelligence, multi-state, 
task switching, fuzzy control, emergent behavior 

I. INTRODUCTION 

An important component of swarm intelligence 
systems is division of labor. If there are multiple, possibly 
competing, objectives, how is a group of autonomous units 
able to decide how many units should work on each 
objective? In this paper, we will demonstrate the ability of 
these swarms to adapt to dynamic conditions by 
autonomously reallocating resources as necessary in order 
to achieve multiple objectives. Our solution is based on 
strategies found in nature, both the state-switching 
methods employed in ant colonies and recruitment 
techniques found in swarms of bees [1]. These methods 
are tested in a simulation that requires the swarms to 
accomplish two objectives at the same time:  defending a 
friendly unit and attacking enemy targets. An evolutionary 
learning algorithm is used to optimize these strategies 
based on fitness scores. The resulting emergent behaviors 
are shown to be robust as the swarms continue to perform 
well even as the population of the swarm decreases. 

II. SWARM INTELLIGENCE 

In a swarm, each agent is computationally simple, 
compared to the complexity of the whole. Individual 
agents follow a set of simple rules which define the 
agent’s behavior. However, when a large number of the 
agents are allowed to work together, the result can be a 
unique and sometimes surprising emergent behavior. For 
the following simulations, decisions the agents make, such 
as “Where do I go next?”, or “Should I begin working on a 
new task?” are controlled via inputs from a group of 
sensors. These inputs are fed into weighting functions 
which determine the resulting decisions of the unit. 

Previous work on similar projects [3][6] focused on 

designing swarms with a single objective. These swarms 
demonstrated the use of Combs control [6] as a viable 
solution to determining the individual rules within a 
swarm. Most previous simulations involved two swarms 
competing in a simple game. By using an evolutionary 
algorithm to optimize the fitness scores of these swarms, 
each swarm was able to develop strategies and counter-
strategies to beat its opponent. Our goal throughout this 
project is to expand upon the previous work to more 
complex swarms that can achieve two or more objectives 
in a dynamic environment. 

III. DEVELOPMENT OF SCENARIO 

The evolved swarm had two objectives. First, the 
swarm needed to defend a central base from incoming 
projectiles. Agents could detonate themselves to destroy 
the enemy projectiles. However, these explosions would 
also take out friendly units nearby. Second, the swarm 
needed to seek out enemy units that were spawned at the 
edges of the playing area. These enemy units periodically 
fired projectiles towards the central base. Enemy units 
were programmed to be stronger and required three agents 
to detonate nearby within a short period of time. This 
requirement was added to force the swarms to form groups 
which would involve learning recruiting techniques. When 
the friendly base took too much damage and was 
destroyed, the simulation ended. A effective swarm in this 
simulation would be able to defend its base while 
simultaneously searching for and destroying enemy units. 
Swarms were scored on how long they survived and how 
many agents stayed within bounds. The solution requires 
the swarm to allocate its resources between the two tasks 
and find efficient methods to complete its objectives. 

The movement of the agents is controlled using the 
input from a variety of sensors. The agents are able to 
sense their distance from friendly units, enemy units, 
enemy projectiles, and the base. These distances are fed 
into two sets of weighting functions to determine the 
resulting movement. One set of weighting functions 
determines movement toward or away from the object 
being sensed, while the second set controls movement 
parallel to the object. The weighting functions are 
adjustable parameters that represent the rules that the 
swarm follows. After a solution is found, we can look at 
the resulting weighting functions to determine which 
strategies were learned by the swarm. All of the sensors 
have a limited range, so that agents are only aware of what 
is happening within a localized area.  

The only exception to this rule is a center sensor. Much 
of the unique behavior of the swarms typically occurs at 
the edges of the playing area. However, in many 
applications there may not be a hard boundary to the 
search area. So instead of a strict, rectangular boundary 
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which was used before, we modified the game to use a 
softer, circular boundary. The units are able to go 
anywhere, but after they reach a certain distance from the 
center, they are inclined to move back in using a separate 
weighting function. For this sensor  we made the distance 
at which the sensor was turned on an adjustable parameter. 
This allowed the swarm to actually learn an optimal area 
to search within. Since the center sensor was different for 
units in different states, this sensor actually resulted in 
some unexpected recruitment techniques which we will 
explain later. 

A. Multiple States 

Since there are two main objectives the swarm is trying 
to accomplish, there are two states the agents are allowed 
to take: attackers and defenders. Defenders are equipped to 
defend the base and destroying incoming projectiles, while 
the attackers are capable of searching for the enemy units, 
forming groups and attacking the enemies in force. Part of 
the inspiration for this division of labor is found in 
colonies of ants. Within most ant colonies, there are 
multiple roles the ants fulfill. When circumstances dictate, 
ants are able to temporarily switch tasks to help the rest of 
the anthill with a task that needs extra work. For instance, 
a soldier ant that senses a large amount of food piled up 
that needs to be taken into the hill could decide to switch 
and function as a worker until the transportation of the 
food is completed. Similarly, agents within the swarm are 
able to switch between offense and defense as needed. 

The switching behavior of ants can be modeled as a 
threshold function and the swarms in this simulation use a 
similar model. The threshold functions determine the 
percent chance that an agent will decide to switch based on 
the input of an environmental variable. In this case, 
switching is partially determined by the number of units in 
the same state versus the units in a different state. Again, 
the agents are only aware of local information, so the 
switching sensors have a limited range as well. Each 
function is defined by a single variable, the threshold. At 
the threshold value, the output of the function is 50%. If 
the input is less than that value, then the agent will most 
likely not take any action. As the value increases above the 
threshold, the agent will be more inclined to switch states, 
if the conditions are right. To prevent the swarm from 
making the mistake of ignoring enemy units, agents are 
only allowed to switch when there are no enemy units or 
projectiles nearby.  While there is a chance that an agent 
can oscillate between states, that chance is minimal 
enough to ignore in this simulation. 

In addition to sensing the number and state of nearby 
units, we utilize a “smart” base. While the central base is 
not a part of the swarm, we allow the base to interact to a 
small extent with the nearby agents. The base counts up 
the number of nearby defenders and broadcasts that 
number to nearby agents. Agents within range are then 
able to make decisions on whether or not to switch based 
on the information given by the base. This was necessary 
because, in some cases, agents would think the base was 
unguarded when, in fact, it was, but the defenders were out 
of range on the other side of the base. Agents are able to 
decide for themselves when the number of defenders is 
either too large or too small. The base is not actually 

making any decisions by itself. Instead, it is passively 
sending the information for the agents to process. 

B. Recruitment 

In addition to deciding when to switch states, the 
agents also needed the ability to recruit units in order to 
form attacking groups. To draw another comparison to ant 
colonies, when ants have trouble moving large objects, 
their first method of recruitment is to release a large 
amount of pheromone within a local area. If that does not 
attract enough ants, the ant will return to the anthill leaving 
a trail of pheromone behind. For our simulation, the 
pheromone trail method does not work well with our 
application, so we decided to implement only the first 
method. Agents are able to sense which other nearby 
agents are asking for help and respond according to some 
preset rules. 

Within the attackers’ task, there are two sub-states: 
recruiters and scouts. All attackers are initially scouts. The 
state switching within the attacker objective is controlled 
via some preset rules. When a scout finds an enemy, it 
becomes a recruiter. When defenders or other recruiters 
find a recruiter and determine that they are in a safe 
position, they become  scouts. The goal is for recruiters to 
search for other agents until a large enough group 
surrounds the recruiter so that the enemy unit can be 
destroyed by the group. Another rule was introduced that 
allowed units that returned to the enemy’s location but 
could not see the enemy to switch back to scouts and 
continue searching. In this scenario the enemy may have 
either drifted away or been destroyed by another group of 
agents. In either case, the agents should move on instead 
of getting stuck in a location that may not be important. 
While the recruitment itself is not an adjustable parameter, 
the movement of the units within the recruitment sub-
states is adjustable. Scouts need to learn to follow 
recruiters and recruiters need to learn the optimal size of 
groups needed. In this simulation, three agents are needed 
to destroy the enemies. 

 

IV. EVOLUTION PROCESS 

For the evolution of the swarms’ parameters, we 
looked at a variety of evolutionary strategies 
[4][5][7][9][10][11]. After some experimentation, we 
selected a method similar to that used in David Fogel’s 
Blondie24 program [2]. At the beginning of the 
evolutionary process, a population of teams is generated. 
Each team contains a set of weighting functions and 
threshold functions that define the rules followed by the 
team’s swarm. For this experiment, a population of 50 
teams was used. 

During each round, each team plays a set number of 
games. After the simulations are completed, each team 
receives a fitness score that represents how well the swarm 
performed during the simulations. It is often difficult to 
determine a fitness function that rewards both good 
defensive and offensive strategies. In order to encourage 
the swarms to learn to defend the base as long as possible, 
points are awarded to the teams based on how long the 
base survived. This point total is then modified by 
multiplying the percentage of active units that remain in 
the playing area at the end of the simulation. This 



 

 

encourages swarms to learn to stay within the playing area 
without actually setting a hard boundary. The fitness 
scores are also adjusted by adding bonuses for 
conservation of movement.  

 
Then, using a lexicographical sorting method, the 

teams are selected based on the number of games in which 
they accomplished certain objectives. After the teams are 
sorted by fitness, they are sorted based on the number of 
games where they find at least one enemy. This rewards 
teams that successfully complete the search objective of 
the attackers. Finally, the teams are sorted based on 
successfully destroying enemies, which indicates a 
completion of the second attacker objective, destroy. At 
this point, the worst 25 teams (half of the overall 
population) are removed from the evolution process and 
the best 25 teams are duplicated. 

The new 25 teams are mutated by adding random 
Gaussian noise to the weights that control the swarms’ 
behavior. This process allows the evolutionary algorithm 
to remove poor solutions and keep successful solutions, 
while constantly searching for new and improved 
strategies that are both similar to previous good solutions 
and different enough that the search is considering new 
strategies. The mutation step size is an important 
parameter in the evolutionary program. If the step size is 
too small, then the program will not be able to effectively 
search through the entire search space. On the other hand, 
if the step size is too large, then the search will not be able 
to converge to a solution. In order to prevent the search 
from converging too quickly, a minimum step size was 
used. The minimum step size was calculated by first 
calculating the average step size for each weight over all 
of the teams tested. After a list of the average step sizes 
was calculated, the minimum step size was found by 
selecting the median of the average step sizes using the 
method described by Liang et al. [8]. 

 

V. RESULTS 

After the evolutionary algorithm was run for several 
hundred generations of teams, the resulting strategies 
allowed the swarms to perform well in both the defense of 
the base and the searching for and destruction of enemy 
units. The improvement of the fitness scores over the 
course of the evolution process is shown in Figure 1. The 

learning algorithm allows the swarms’ fitness scores to 
increase over time, before leveling out at a maximum 
value given the parameters of the simulation. 

 
One of the more basic behaviors learned was the 

division of labor. A swarm was able to divide itself up into 
two groups, with roughly two thirds going into attack 
mode and the remaining acting as defenders. This 
emergent behavior was intuitive given that attackers had 
more of a search area to cover, while only a small amount 
of defenders were needed to guard the base. After the 
initial division of labor, the swarm was able to 
dynamically shift its resources autonomously. As 
defenders are depleted through either enemy projectiles or 
recruitment, they are replenished by nearby attackers that 
switch states when they determine the number of 
defenders is too small. Figures 2 and 3 demonstrate the  
dynamic state switching behaviors learned by the swarms.  
 

 
The attackers learned to spread out both from the base 

and from each other. The scouts also learned an optimal 
distance at which to turn on their center sensor to allow 

 
Figure 3. This function represents the way the agents process the 
information broadcast from the base. The base will broadcast the 
number of defenders around it and the agent has the option of 
switching to a defensive mode if it decides there are not enough 
defenders around it. In this case, the swarm will attempt to keep at 
least 8 or so defenders around the base. If the number of defenders 
is less than that, then nearby attackers will most likely switch to a 
defensive mode. Here, the base has broadcast that there are 6 
defenders around it. A red scout has heard the message and decided 
that 6 defenders is not enough, so it chooses to switch states to 
become a blue defender. (For a video of this swarm, see 
http://NeoSwarm.com/videos.html.) 

 
Figure 2. The threshold function shown here demonstrated the 
ability for agents to switch states if they decide there are too many 
units working on their task and are “bored”. First, the agent counts 
up the number of nearby agents working on its task and those 
working on a different task. This is fed into the threshold function, 
which determines the chance that the agent will switch. In this 
case, if the difference between nearby defenders and attackers is 3, 
then the agent has a 50% chance of switching to offense. If the 
number of defenders compared to attackers is large, the agent will 
most likely switch, and vice versa. In this image, a blue defending 
agent has decided that there are too many defenders around it and 
chooses to switch states to become a red scout. (For a video of this 
swarm, see http://NeoSwarm.com/videos.html.) 

 
Figure 1. This figure represents the learning process of the 
evolutionary algorithm by showing how the fitness scores 
improved over time. After 300 generations, the algorithm 
converges to an optimal solution.



 

 

them to both remain in the playing area and search as 
much of the map as possible. The defenders also learned to 
surround the base while maintaining a set distance from 
each other. They learned to keep their distance because 
detonations to destroy enemy projectiles could destroy 
friendly units if they were too close. 

 
One of the more unexpected results came from the 

optimization of the center sensor. The goal was for the 
swarm to learn to stay within the boundaries of the playing 
area. An interesting emergent behavior was that the 
recruiters’ center sensor turned on at a very small value. 
This caused all recruiters to be drawn back to a tight radius 
around the base, which resulted in an effective recruitment 
strategy as there is always a group of agents close to the 
base. These recruiting techniques are shown in Figures 4 
and 5. 

One of the benefits of swarm intelligence is graceful 
degradation of the swarm’s performance. As the 
simulation progresses, the swarm will incur losses. 
However, by dynamically shifting its resources, the swarm 
is able to maintain both tasks, defending the base while 
still searching for enemy units. It is only when the swarm 
loses a large percentage of its population that the swarm 
begins to break down and is no longer able to successfully 
work on both objectives. The swarms in this project were 
evolved with an initial population size of 40 units. This 
number allowed the group of units to be large enough to be 
considered a swarm while still being small enough to 
encourage unique, emergent behavior. The concept of how 
large a swarm needs to be in order to be considered a 
swarm is a fuzzy one and often depends on the application. 
The question of how size affects a swarm’s performance 
will be explored further in future work. 

 
 

VI. CONCLUSION 

One of the advantages of swarm intelligence is a 
swarm’s ability to autonomously reorganize itself in a 
dynamic environment. In our work, we have used 
techniques found in nature to allow a swarm to manifest 
this behavior in a simulation where the swarm is required 
to perform well in two objectives. The swarm has to both 
defend a friendly target, while also finding and destroying 
enemy units. By using an evolutionary learning algorithm, 
the weighting functions that defined the swarms’ behavior 
were optimized to be successful in both the offensive and 
defensive objectives. We believe that these concepts can 
be expanded upon in future work. One topic to consider is 
the effect of size on a swarm’s performance. For the 
purposes of these simulations, a population size of 40 was 
chosen because it is small enough to be feasible in a real-
world application but also large enough to demonstrate 
swarm characteristics. A more in depth exploration of the 
effects of population size could provide more insight as to 
when a large group of agents begins functioning as a 
swarm. 

 
In conclusion, this paper has demonstrated the 

application of a multi-state swarm that was able to use 
state-switching capabilities to adapt to a dynamically 
changing environment. While previous work has shown 
swarm intelligence as a viable solution to single objective 
missions, we have expanded these swarm techniques to 
accomplish multiple objectives using threshold functions 
to control the switching between states. The emergent 
behaviors of the swarms are robust and allow the swarm to 
continue achieving its objectives until a large percentage 
of its population is lost.  

 

 

Figure 5. Here, a red scout has found an enemy unit and 
switched states to become a maroon recruiter. The recruiter is 
headed back toward the base in order to recruit other agents to 
form a group large enough to take out the enemy. This image 
shows the recruiter being joined by a third agent, which was 
formerly a blue defender. Since the recruiter senses that its 
group is at least three agents and is big enough to destroy the 
enemy, the recruiter turns and begins leading the group to the 
enemy unit to attack it. After the enemy is destroyed, any 
remaining agents from the group will continue searching in a 
scout mode. (For a video of this swarm, see 
http://NeoSwarm.com/videos.html.) 

 
Figure 4. The first function shows the center sensor for recruiters. 
Note the scale for the x-axis. Any recruiters that are more than 1 
unit away from the base will be inclined to return to the base. In 
other words, all recruiters return to the base. It is easy to 
understand why this unexpected strategy developed because there 
are (or should always be) agents acting as defenders near the base 
that can be recruited to join recruiters’ groups. This second graph 
demonstrates another part of the recruitment method learned. It 
represents how the agent moves with respect to the found enemy 
based on the number of friendly agents around it. If there are no 
friendly units around, the agent is repelled from the enemy; it is not 
strong enough. If there is one unit around the recruiter, then it still 
does not return to the enemy. Only when there are at least two 
friendly agents nearby does the recruiter return to the enemy. At 
this point, the group is at least three agents strong and able to 
destroy an enemy unit. 
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